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Continuous time quantum walks(CTQWs) do not necessarily perform better than their classical counter-
parts, the continuous time random walks(CTRWs). For one special graph, where a recent analysis showed that
in a particular direction of propagation the penetration of the graph is faster by CTQWs than by CTRWs, we
demonstrate that in another direction of propagation the opposite is true. In this case a CTQW initially
localized at one site displays a slow transport. We furthermore show that when the CTQW’s initial condition
is a totally symmetric superposition of states of equivalent sites, the transport gets to be much more rapid.
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The transfer of information over discrete structures(net-
works) which are not necessarily regular lattices has become
a topic of much interest in recent years. The problem is rel-
evant to many distinct fields, such as polymer physics, solid
state physics, biological physics and quantum computation
(see Refs.[1–6] for reviews). In particular, quantum mechan-
ics seems to allow a much faster transport than classically
possible. Thus, recent studies of quantum walks on graphs
show that these often outperform their classical counterparts,
i.e., in terms of the penetrability of the graph(for an over-
view see Ref.[4] and references therein). We recall that the
extension of classical random walks to the quantum domain
is not unique. There exist different variants of quantum
walks, such as discrete[7] and continuous time[8] versions,
which are not equivalent to each other. Here we focus on
walks in continuous time.

Walks occur over graphs which are collections of con-
nected nodes. To each graph corresponds a discrete Laplace
operator(sometimes also called adjacency or connectivity
matrix), A =sAijd. Here the nondiagonal elementsAij equal
−1 if nodesi and j are connected by a bond and 0 otherwise.
The diagonal elementsAii equal the number of bonds which
exit from nodei, i.e., Aii equals the functionalityf i of the
nodei.

Classically, assuming the transmission rates of all bonds
to be equal, sayg, the continuous-time random walk
(CTRW) is governed by the master equation[6]

d

dt
pjstd = o

k

Tjkpkstd, s1d

wherepjstd is the probability to find at timet the walker at
node j . T =sTjkd is the transfer matrix of the walk, which is
related to the adjacency matrix byT =−gA. Equation(1) is
spatially discrete, but it also admits extensions to continuous
spaces, e.g., leading to the disordered Lorentz gas model,
which describes the dynamics of an electron through a dis-
ordered substrate[9].

We stick with the spatially discrete situation and let now

the CTRW start from nodek, i.e., we setpks0d=d jk. Denoting
by pjkstd the conditional probability of being at nodej at time
t when starting at nodek at t=0 leads to

d

dt
pjkstd = o

l

Tjlplkstd, s2d

which is another way to write Eq.(1) [5,6]. Given the lin-
earity of these equations, their solution involves a simple
integration. For Eq.(2) we have formally

pjkstd = k j ueTtukl. s3d

We now turn to one quantum mechanical extension of the
problem, the so-called continuous-time quantum walk
(CTQW). CTQWs are obtained by assuming the Hamil-
tonian of the system to beH =−T [8,10]. Then the basis
vectorsukl associated with the nodesk of the graph span the
whole accessible Hilbert space. In this basis the Schrödinger
equation reads

i
d

dt
ukl = H ukl, s4d

where we set";1. The transition amplitudea jkstd from
stateukl at time 0 to stateu jl at time t is then

a jkstd = k j ue−iHtukl. s5d

According to Eq.(4) the a jkstd obey

i
d

dt
a jkstd = o

l

Hjlalkstd. s6d

The inherent difference between Eq.(3) and Eq.(5) is, apart
for the imaginary unit, the fact that classicallyo jpjkstd=1,
whereas quantum mechanicallyo jua jkstdu2=1 holds.

We turn now to the graph displayed in Fig. 1(a). The
graph is obtained from two finite Cayley trees of generation
G which have a common set of end nodes along the horizon-
tal symmetry axis indicated in Fig. 1(a) [8,10]. For the nodes
on the axis as well as for the top and bottom nodes the
connectivity isf =2, whereas for all other nodesf =3.

The authors of Refs.[8,10] have analyzed CTQWs over
the graph given in Fig. 1(a), focusing on walks which start at
the top node, and looking for the amplitude, Eq.(5), of being
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at the bottom node at timet. The problem can then be sim-
plified by considering only states which are totally symmet-
ric superpositions of statesukl involving all the nodesk in
each row of Fig. 1(a), as indicated schematically in Fig. 1(b).
The transport then gets mapped onto a one-dimensional
CTQW [10].

Given that CTQWs obey time inversion, so that they
never reach a limiting distribution, one uses the quantity[11]

x jk = lim
T→`

1

T
E

0

T

dtua jkstdu2 s7d

to compare the efficiency of CTQWs to that of CTRWs. We
will show in the following that thex jk may depend strongly
on the initial state. Now, as shown in[10], based on Eq.(7),
the CTQW’s probability of being at the bottom node when
starting at the top node is considerably larger than that of
CTRWs.

One legitimate question to ask now is: What happens if
one considers on the same graph CTQWs which start at the
leftmost node and end at the rightmost node? As we proceed
to show, it turns out that then the transport by CTQWs gets
to be much slower than the transport by CTRWs. We start by
focusing on the full solution of Eq.(6), for which all the
eigenvalues and all the eigenvectors ofT =−H (or, equiva-
lently, of A) are needed. For, say, the 22 nodes of Fig. 1(a)
we have to solve the eigenvalue problem forA (or T), which
is a real and symmetric 22322 matrix. This is a well-known
problem, also of much interest in polymer physics[12,13],
and many of the results obtained there can be used for our
problem here.

We recall first that the matrixA is non-negative definite.
Then, for a structure like the one in Fig. 1(a), A has exactly
one vanishing eigenvalue,l0=0, the remaining eigenvalues
being positive. Letln denote thenth eigenvalue ofA andL
the corresponding eigenvalue matrix. Furthermore, letQ de-

note the matrix constructed from the orthonormalized eigen-
vectors ofA, so thatA =QLQ−1. Now the classical probabil-
ity is given by

pjkstd = k j uQe−tgLQ−1ukl. s8d

For the quantum mechanical transition probability it follows
that

p jkstd ; ua jkstdu2 = uk j uQe−itgLQ−1uklu2. s9d

In order to determine numerically the corresponding ei-
genvalues and eigenvectors of the matrixA for different
graphs we have used the standard software packageMAPLE 7.
We start by considering the smaller graph,G=2, given at the
top of Fig. 2. The figures show the transition probabilities for
CTQWs and CTRWs starting at the top node 1(left column),
which corresponds to the situation described in[10], or at the
leftmost node 4(right column). Remarkably, CTQWs start-
ing at the top node reach the opposite node 10 very quickly,
see Fig. 2(a), much quicker than expected from the CTRW
behavior, Fig. 2(c). However, for walks starting at the left-
most node 4 and going to the rightmost node 7, the probabili-
ties for the CTQWs, Fig. 2(b), and the CTRWs, Fig. 2(d), get
to be comparable. Furthermore, the CTQWs’ probabilities,
p4,4std and p1,1std, of return to the starting node within the
time interval depicted in Fig. 2 are much higher if the walks
start at the leftmost node 4 of the graph instead of at the top
node 1. On the other hand, for CTRWs there is not much
difference between starting at the leftmost or at the top node,
only that in the first case it just takes a little bit longer to
reach a uniform distribution[compare Fig. 2(c) and Fig.
2(d)].

We now extend the time interval tot=40 and compare the
efficiency of the CTQW transport to the CTRW one. In Fig.
3 we plot for the top-bottom and the left-right walks the ratio
of the quantum mechanical probabilitiesp jkstd to the classi-
cal onespjkstd. For top-bottom transport, depicted in Fig.
3(a), the plot turns out to be highly regular, reflecting the
high symmetry of the underlying graph in the vertical direc-
tion. For left-right transport the plot is less regular. Note the
different scaling of the ordinates in the two parts of Fig. 3,
which again stresses the preferential role played by the trans-
port in top-bottom direction.

In order to discuss what happens at even longer times, we
proceed to evaluate for the CTQW the limiting distributions
x jk given by Eq.(7). For CTRWs the limit is simple: All
pjkstd tend to the same constant, which is the inverse of the
total number of nodes in the graph, no matter where the
CTRWs start. For the CTQWs, however, this is not the case,
as can already be inferred from Figs. 2 and 3. Hence, we
computex jk for the top-bottom and for the left-right cases
separately. Therefore, for theG=2 graph we compute the
eigenvalues and eigenvectors of the respective 10310 ma-
trix A and thex jk by usingMAPLE. Having the appropriate
eigenvalue matrixL and the matrixQ constructed from the
orthonormalized eigenvectors we find with Eqs.(7) and (9)
and the LinearAlgebra package ofMAPLE that for the top-
bottom case

FIG. 1. (a) Graph consisting of two Cayley trees of generation
G=3. (b) Horizontal projection of the graph following Ref.[10]. (c)
Vertical projection of the same graph.(d) Vertical projection of a
similar graph, obtained from two Cayley trees of general generation
G, indicating the new nodes(clusters) and thedk (see text for
details).

O. MÜLKEN AND A. BLUMEN PHYSICAL REVIEW E 71, 016101(2005)

016101-2



x10,1= 0.2644.
1
10, s10d

whereas for the left-right case

x7,4= 0.0545,
1
10. s11d

Thus, the limiting CTRW-probability,110, lies betweenx7,4
and x10,1. The top-bottom CTQW is more, the left-right
CTQW less efficient than the corresponding CTRW.

In order to better visualize that the top-bottom and left-
right x jk are very different, we show in Figs. 4 and 5 the
quantum mechanical transition probabilitiesp jkstd for all
nodesj when starting(a) at the leftmost node and(b) at the
top node; in these figures the time is displayed parametri-
cally. Figure 4 is for theG=3 graph and Fig. 5 for theG
=2 graph. Now, even for the small graphs considered here,
we find differences in the transition probabilities, which
clearly depend on the initial node. For theG=3 graph con-
sisting of 22 nodes, the CTQW starting at the top node 1
spreads out rapidly over the whole graph. After a very short
time interval, there is a large probability to find the walker at
the bottom node 22[see Fig. 4(b)]. However, for the CTQW

FIG. 2. Top: Graph obtained from two
Cayley-trees of generationG=2. Below: Prob-
abilities for the CTQW,(a) and (b), and for the
CTRW, (c) and (d), to be at nodej after time t
when starting at time 0 from node 1 or from node
4. Left column,(a) and (c): Starting node is the
top node 1. Right column,(b) and (d): Starting
node is the leftmost node 4. The time is given in
units of the inverse transmission rateg−1 [see text
following Eq. (1)].

FIG. 3. Ratiosp jkstd /pjkstd for different directions of propaga-
tion, (a) top-bottom walk and(b) left-right walk over timet. See
Fig. 2 for units and details.
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starting at the leftmost node 8, we have up to timest=160 a
high probability of finding it in the left half of the graph[see
Fig. 4(a)]. Therefore, the propagation of the CTQW is
strongly dependent on the starting node. For the smallerG
=2 graph of Fig. 5, which consists of 10 nodes, the effect is
similar, but slightly less pronounced.

We illustrate the situation at very long times in Fig. 6,
where we display the limiting probabilitiesx jk for the G=2
and theG=3 graphs[see Eq.(7)]. For a CTQW starting at
the top node 1 the limiting probability distribution has its
maxima at the end nodes of the graphs, i.e., at nodes 1 and
10 for G=2, and at nodes 1 and 22 forG=3. For a CTQW
starting at the leftmost node,k=4 for G=2 andk=8 for G
=3, the limiting probability distribution shows a strong
maximum around the starting node.

Other initial conditions for the CTQW are, indeed, pos-
sible, especially when considering the high symmetry of the

underlying graphs. Note that, using for instance the site enu-
meration of Fig. 4, a CTQW from node 8 to node 15 is
equivalent to a CTQW from, say, node 10 to node 14. The
graph’s symmetry suggests to collect groups of such nodes
into clusters, while focusing on the transport from left to
right. It is then natural to view the nodes 8, 9, 10, and 11 as
belonging to the first cluster. The second cluster consists then
of the nodes 4, 5, 16, and 17, all of which are directly con-
nected by one bond to the nodes of the first cluster. The
nodes 2 and 20 of the third cluster are all nodes directly
connected by one bond to the nodes of the second cluster,
while at the same time not belonging to the first cluster. In
general, all the nodes of thesk+1dst cluster are connected by
one bond to nodes of thekth cluster and at the same time do
not belong to thesk−1dst cluster.

Let us denote the number of nodes in clusterk by dk. The
transport occurs now from a cluster to the next, by which the
original graph gets mapped onto a line in which one new
node corresponds to a group of original nodes of the graph.
For a new node at positionkP f2,Gg we find that dk

=2G−k+1, the same being true for the mirror node value, i.e.,
dk=d2G+2−k. Note that for the end nodesd1=d2G+1=2G−1, the
same holds for the nodes next to them. Moreover, for the
middle nodedG+1=2.

We now focus on the transport via the states which
are totally symmetric, normalized, linear state-combinations
for all the original nodes in each cluster. Thus, for thekth
cluster, whose sites we denote byn, we have as a new
state

uakl =
1

Îdk
o
nPk

unl. s12d

FIG. 4. Transition probabilitiesp jkstd for a CTQW on theG
=3 graph starting(a) at the leftmost node,p j8std, and(b) at the top
node,p j1std, for timest=1, 5, 20, 80, and 160. See Fig. 2 for units
and details.

FIG. 5. Transition probability for a CTQW on theG=2 graph
starting at(a) the leftmost node,p j4std, and (b) at the top node,
p j1std, for times t=1, 5, 20, 80, and 160. See Fig. 2 for units and
details.

FIG. 6. Limiting probabilityx jk for a CTQW on the(a) G=2
graph and on the(b) G=3 graph. Starting points are the top node,
k=1, and the leftmost nodesk=4 andk=8, respectively.
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The CTQW is now determined by the new Hamiltonian

H̃ =gÃ, where the matrix elements ofÃ are obtained from
the new basis statesuakl and from the matrixA through

Ãjk = kajuA uakl. s13d

Given the properties ofA and the construction of theuakl,
Eq. (12), Ã is a real and symmetrical tridiagonal matrix,
which implies a CTQW on a line. The diagonal elements of

Ã are given by

Ãkk = kakuA uakl =
1

dk
o
nPk

n8Pk

kn8uA unl = fn ; fk, s14d

wherefk is the functionality of every node in thekth cluster.

For the sub- and super-diagonal elements ofÃ we find

Ãk,k+1 = Ãk+1,k = kakuA uak+1l

=
1

Îdkdk+1
o
nPk

n8Pk+1

kn8uA unl = −
bk

Îdkdk+1

, s15d

where bk is the number of bonds between the clustersk
and k+1. Now, except for the ends and the center of the
graph,bk equals the maximum of the pairsdk,dk+1d. Between
the central nodesdG+1=2d and its neighborssdG=dG+2=2d
the number of bonds isbG=bG+2=2. The number of bonds
between the end node and its neighbor isb1=b2G+1=2d1
=2G.

For the graph consisting of 22 original nodes the new

matrix Ã is a tridiagonal 737 matrix, which can be readily
diagonalized. The advantage of the procedure is clear: the

new matrixÃ depends on the number of clusters and grows
with s2G+1d, whereas the full adjacency matrix,A, grows
with the total number of nodes in the graph, namely with
s332G−2d.

From Eq.(12) the transition amplitude between the state
uakl at time 0 and the stateuajl at time t is given by

ã jkstd = kajue−iH̃tuakl = kajuQ̃e−igL̃tQ̃−1uakl, s16d

whereL̃ is the eigenvalue matrix andQ̃ is the matrix con-
structed from the orthonormalized eigenvectors of the new

matrix Ã.
Now the quantum mechanical transition probabilities are

given by p̃ jkstd= uã jkstdu2. Figure 7(a) shows the transition
probabilities for CTQWs over clusters. Remarkably now, and
similar to Fig. 4(b), already in rather short periods of time
such CTQWs move from one end cluster to the other. The
limiting probability distribution, x̃ jk, which is depicted in
Fig. 7(b), also supports this finding. Note that Fig. 7(b) again
reflects the symmetry of the original graph.

In conclusion, we have shown that CTQWs do not neces-
sarily perform better than their CTRWs counterparts. By fo-
cusing on a particular graph, we have shown that the pen-
etration of such a graph by CTQWs can be better or worse
than the one by CTRWs, depending on the initial state and
on the propagation direction under scrutiny.
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