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Slow transport by continuous time quantum walks
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Continuous time quantum walkK€TQWs do not necessarily perform better than their classical counter-
parts, the continuous time random walkSTRWSs). For one special graph, where a recent analysis showed that
in a particular direction of propagation the penetration of the graph is faster by CTQWs than by CTRWSs, we
demonstrate that in another direction of propagation the opposite is true. In this case a CTQW initially
localized at one site displays a slow transport. We furthermore show that when the CTQW'’s initial condition
is a totally symmetric superposition of states of equivalent sites, the transport gets to be much more rapid.
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The transfer of information over discrete structu(est-  the CTRW start from nodk, i.e., we sep,(0) = 6. Denoting
works) which are not necessarily regular lattices has becomey py(t) the conditional probability of being at nogiat time
a topic of much interest in recent years. The problem is relt when starting at nodk att=0 leads to
evant to many distinct fields, such as polymer physics, solid d
state physics, blologl_cal physics _and quantum computation —py(®) => Typwlb), )
(see Refs[1-6] for reviews. In particular, quantum mechan- dt |
ics seems to allow a much faster transport than classically = ) ) )
possible. Thus, recent studies of quantum walks on graph&hich is another way to write Eq1) [5,6]. Given the lin-
show that these often outperform their classical counterpart§2ity of these equations, their solution involves a simple
i.e., in terms of the penetrability of the graglor an over-  intégration. For Eq(2) we have formally
view see Ref[4] and references therginWe recall that the (1) = (ile'

. . : pik(®) = (jle"k). )

extension of classical random walks to the quantum domain
is not unique. There exist different variants of quantum e now turn to one quantum mechanical extension of the
walks, such as discref&] and continuous timg8] versions, problem, the so-called continuous-time quantum walk
which are not equivalent to each other. Here we focus ofCTQW). CTQWs are obtained by assuming the Hamil-
walks in continuous time. tonian of the system to bel=-T [8,10]. Then the basis

Walks occur over graphs which are collections of con-vectors|k) associated with the nodésof the graph span the
nected nodes. To each graph corresponds a discrete Lap|a\(y@0|e accessible Hilbert space. In this basis the Schrodinger
operator(sometimes also called adjacency or connectivityequation reads
matrix), A=(A;j). Here the nondiagonal elememg equal d
-1 if nodesi andj are connected by a bond and 0 otherwise. i—|k) =H|k), (4)
The diagonal elementd; equal the number of bonds which dt
exit from nodei, i.e., A; equals the functionalityi; of the  where we seti=1. The transition amplitudex;(t) from

nodei. _ o state|k) at time O to statéj) at timet is then
Classically, assuming the transmission rates of all bonds it
to be equal, sayy, the continuous-time random walk aj(t) = (jle™™[k). (5

(CTRW) is governed by the master equatif8j According to Eq.(4) the a;(t) obey

d
= h(f) = , . d
dt Pi(0 = zk: TiPx(0), @ gt = EI Hj an(t). (6)

wher(_e p;(t) is thg probability to find_ at time the walke_r at_ The inherent difference between E8) and Eq.(5) is, apart
nodej. T=(Tj) is the transfer_matrlx of the WaII'<, WhIC.h IS for the imaginary unit, the fact that classicalip; (t)=1,
relat_ed to _the adjacen_cy matrix Hy:_YA' Equation(d) IS \yhereas quantum mechanicaﬂy|a-k(t)|2:1 holds.

spatially discrete, but it also admits extensions to continuous We turn now to the graph dis]played in Figial The

spaces, €.g., leading to th(_a disordered Lorentz gas mc"?'pdraph is obtained from two finite Cayley trees of generation
which describes the dynamics of an electron through a d|sG which have a common set of end nodes along the horizon-

ordered substratg]. S S
. : . . R tal symmetry axis indicated in Fig(d) [8,10]. For the nodes
We stick with the spatially discrete situation and let now o o avis as well as for the top and bottom nodes the

connectivity isf=2, whereas for all other nodds 3.
The authors of Refd.8,10 have analyzed CTQWSs over
*Electronic address: oliver.muelken@physik.uni-freiburg.de the graph given in Fig. (&), focusing on walks which start at
"Electronic address: blumen@physik.uni-freiburg.de the top node, and looking for the amplitude, [E5), of being
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(b) note the matrix constructed from the orthonormalized eigen-

(@) vectors ofA, so thatA=QAQ™. Now the classical probabil-
ity is given by
Pi() = (jlQe™* Q7YK). (8
For the quantum mechanical transition probability it follows
that
© X . X () = (D)2 = (j| Qe AQ k). 9
B - In order to determine numerically the corresponding ei-
d, 25t Re 2 2 20-3508-2,G-1,G-1 genvalues and eigenvectors of the matfixfor different
(d) dluster 1.—;—;—:‘ """ 'a—cf:* """ "—A—'—Z% ; graphs we have used the standard software packages 7.
u + +

We start by considering the smaller gra@w 2, given at the

FIG. 1. (a) Graph consisting of two Cayley trees of generation tOP of Fig. 2. The figures show the transition probabilities for
G=3. (b) Horizontal projection of the graph following Refl0]. (c)  CTQWSs and CTRWs starting at the top noddett column),
Vertical projection of the same grapit) Vertical projection of a  Which corresponds to the situation describe(ilid], or at the
similar graph, obtained from two Cayley trees of general generatiofeftmost node 4right column. Remarkably, CTQWs start-
G, indicating the new nodegclusters and thed, (see text for ing at the top node reach the opposite node 10 very quickly,
details. see Fig. 2a), much quicker than expected from the CTRW

behavior, Fig. ). However, for walks starting at the left-

at the bottom node at time The problem can then be sim- Most node 4 and going to the rightmost node 7, the probabili-
plified by considering only states which are totally symmet-ti€s for the CTQWs, Fig. @), and the CTRWs, Fig.(@), get

fic superpositions of statdk) involving all the nodes in 0 be comparable. Furthermore, the CTQWSs' probabilities,
each row of Fig. (a), as indicated schematically in Figd). w4 4(t) and 1y 4(t), of return to the starting node within the

The transport then gets mapped onto a one-dimension&me interval depicted in Fig. 2 are much higher if the walks
CTQW [10]. start at the leftmost node 4 of the graph instead of at the top

Given that CTQWS obey time inversion, so that theynode 1. On the other hand, for CTRWSs there is not much
never reach a limiting distribution, one uses the quartity ~ difference between starting at the leftmost or at the top node,
only that in the first case it just takes a little bit longer to
1 (T reach a uniform distributiojcompare Fig. &) and Fig.
T2 TJo We now extend the time interval t&40 and compare the
efficiency of the CTQW transport to the CTRW one. In Fig.
to compare the efficiency of CTQWs to that of CTRWSs. We 3 we plot for the top-bottom and the left-right walks the ratio
will show in the following that they;, may depend strongly of the quantum mechanical probabilitieg(t) to the classi-
on the initial state. Now, as shown 0], based on Eq7), cal onespy(t). For top-bottom transport, depicted in Fig.
the CTQW's probability of being at the bottom node when3(a), the plot turns out to be highly regular, reflecting the
starting at the top node is considerably larger than that ohigh symmetry of the underlying graph in the vertical direc-
CTRWs. tion. For left-right transport the plot is less regular. Note the

One legitimate question to ask now is: What happens ifdifferent scaling of the ordinates in the two parts of Fig. 3,
one considers on the same graph CTQWSs which start at thehich again stresses the preferential role played by the trans-
leftmost node and end at the rightmost node? As we procegabrt in top-bottom direction.
to show, it turns out that then the transport by CTQWs gets In order to discuss what happens at even longer times, we
to be much slower than the transport by CTRWSs. We start byroceed to evaluate for the CTQW the limiting distributions
focusing on the full solution of Eq(6), for which all the  xjc given by Eq.(7). For CTRWs the limit is simple: All
eigenvalues and all the eigenvectorsTof-H (or, equiva-  pj(t) tend to the same constant, which is the inverse of the
lently, of A) are needed. For, say, the 22 nodes of Fi@ 1 total number of nodes in the graph, no matter where the
we have to solve the eigenvalue problemAo¢or T), which  CTRWSs start. For the CTQWSs, however, this is not the case,
is a real and symmetric 2222 matrix. This is a well-known as can already be inferred from Figs. 2 and 3. Hence, we
problem, also of much interest in polymer physjd®,13,  computey;, for the top-bottom and for the left-right cases
and many of the results obtained there can be used for oweparately. Therefore, for th@=2 graph we compute the
problem here. eigenvalues and eigenvectors of the respectiv 10 ma-

We recalll first that the matri is non-negative definite. trix A and they; by usingMAPLE. Having the appropriate
Then, for a structure like the one in Fig@, A has exactly eigenvalue matrixXA and the matrixQ constructed from the
one vanishing eigenvalua,=0, the remaining eigenvalues orthonormalized eigenvectors we find with E¢g) and (9)
being positive. Lei, denote thenth eigenvalue oA andA  and the LinearAlgebra package whpPLE that for the top-
the corresponding eigenvalue matrix. FurthermoreQlete-  bottom case
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SLOW TRANSPORT BY CONTINUOUS TIME QUANTUM WALKS
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X10,1= 0.2644> flo, (10)

whereas for the left-right case
X7.4=0.0545< 5. (11)

Thus, the limiting CTRW—probabiIity%O, lies betweeny; 4
and xj01. The top-bottom CTQW is more, the left-right
CTQW less efficient than the corresponding CTRW.

In order to better visualize that the top-bottom and left-
right x;c are very different, we show in Figs. 4 and 5 the
quantum mechanical transition probabilitieg,(t) for all
nodesj when starting@) at the leftmost node angb) at the
top node; in these figures the time is displayed parametri-
cally. Figure 4 is for theG=3 graph and Fig. 5 for th&
=2 graph. Now, even for the small graphs considered here,
we find differences in the transition probabilities, which
clearly depend on the initial node. For tlie=3 graph con-
sisting of 22 nodes, the CTQW starting at the top node 1
spreads out rapidly over the whole graph. After a very short

Ty018 /P 1040
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FIG. 2. Top: Graph obtained from two
Cayley-trees of generatio®=2. Below: Prob-
abilities for the CTQW,(a) and (b), and for the
CTRW, (c) and (d), to be at nodg after timet
when starting at time 0 from node 1 or from node
4. Left column,(a) and(c): Starting node is the
top node 1. Right columnib) and (d): Starting
node is the leftmost node 4. The time is given in
units of the inverse transmission rafe' [see text
following Eq. (1)].

12 T T T T T T T
o] -—
6
3
0- | 1 1 1 ]
0 10 20 30 40
3 T | T | T T T
2 -—
1 -—
0 1 | | 1
0 10 20 30 40

time t

FIG. 3. Ratiosmy(t)/py(t) for different directions of propaga-
time interval, there is a large probability to find the walker attion, (a) top-bottom walk andb) left-right walk over timet. See

the bottom node 2see Fig. 4b)]. However, for the CTQW  Fig. 2 for units and details.
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node, (1), for timest=1, 5, 20, 80, and 160. See Fig. 2 for units ol i
and details. 0 4 8 2 16 20
position j

starting at the leftmost node 8, we have up to tirte$60 a FIG. 6. Limiting probability x; for a CTQW on the(a) G=2
high probability of finding it in the left half of the graplisee  graph and on théb) G=3 graph. Starting points are the top node,
Fig. 4@)]. Therefore, the propagation of the CTQW is k=1, and the leftmost nodds=4 andk=8, respectively.

strongly dependent on the starting node. For the sméller
=2 graph of Fig. 5, which consists of 10 nodes, the effect i
similar, but slightly less pronounced.

We illustrate the situation at very long times in Fig. 6
where we display the limiting probabilitieg for the G=2
and theG=3 graphs[see Eq.(7)]. For a CTQW starting at
the top node 1 the limiting probability distribution has its
maxima at the end nodes of the graphs, i.e., at nodes 1 a
10 for G=2, and at nodes 1 and 22 f@=3. For a CTQW
starting at the leftmost nod&=4 for G=2 andk=8 for G
=3, the limiting probability distribution shows a strong
maximum around the starting node.

Other initial conditions for the CTQW are, indeed, pos-
sible, especially when considering the high symmetry of th

aunderlying graphs. Note that, using for instance the site enu-
meration of Fig. 4, a CTQW from node 8 to node 15 is
' equivalent to a CTQW from, say, node 10 to node 14. The
graph’s symmetry suggests to collect groups of such nodes
into clusters, while focusing on the transport from left to
right. It is then natural to view the nodes 8, 9, 10, and 11 as
longing to the first cluster. The second cluster consists then
of the nodes 4, 5, 16, and 17, all of which are directly con-
nected by one bond to the nodes of the first cluster. The
nodes 2 and 20 of the third cluster are all nodes directly
connected by one bond to the nodes of the second cluster,
while at the same time not belonging to the first cluster. In
egeneral, all the nodes of thikg+1)st cluster are connected by
@ one bond to nodes of tHeh cluster and at the same time do

osk E not belong to thek-1)st cluster.
910:5-_ ] Let us denote the number of nodes in clustéry d,. The
g 04l _' transport occurs now from a cluster to the next, by which the
'§ 03| 3 original graph gets mapped onto a line in which one new
g o2 - node corresponds to a group of original nodes of the graph.

01 - For a new node at positiokke[2,G] we find that dy

% =267k*1 the same being true for the mirror node value, i.e.,
b . dy=0oc+2 Note that for the end nodek =d,g,; =271, the
= 2¢F 3 same holds for the nodes next to them. Moreover, for the
ggj; 1 middle nodedg,,=2.
Z o3l ] We now focus on the transport via the states which
é 02k 2 are totally symmetric, normalized, linear state-combinations
= oif - for all the original nodes in each cluster. Thus, for kik

0

cluster, whose sites we denote by we have as a new
position j State

FIG. 5. Transition probability for a CTQW on th&=2 graph
starting at(a) the leftmost nodesrj4(t), and (b) at the top node, 1
mj1(1), for timest=1, 5, 20, 80, and 160. See Fig. 2 for units and lag) = —> In). (12
details. Vdgnek
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FIG. 7. (a) Transition probability7r;;(t) for a CTQW between
different clusterg of the G=3 graph. The CTQW starts at the first
cluster; presented is the situation at tinhed, 5, 10, 20, 40, 80, and
160. See Fig. 2 for units and detai{b) Limiting probability’y;, for
a CTQW starting at the first cluster.

The CTQW is now determined by the new Hamiltonian

H=1vA, where the matrix elements @& are obtained from
the new basis states,) and from the matri>A through

ij:<aj|A|ak>-
Given the properties oA and the construction of thiy),

Eq. (12), A is a real and symmetrical tridiagonal matrix,
which implies a CTQW on a line. The diagonal elements of

A are given by

(13)
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Z‘k,k+1 = ’Ak+l,k = (ay|Alay.1)

1 b
=——— X (Aln=-—=, (19
VOke1 nek Vit

n’ ek+1

where b, is the number of bonds between the clustkrs
and k+1. Now, except for the ends and the center of the
graph,b, equals the maximum of the pdi,, d,,;). Between
the central nodédg,;=2) and its neighborgdg=dg,»=2)
the number of bonds ibg=bg,,=2. The number of bonds
between the end node and its neighborbis=b,g,1=2d;
=26,

For the graph consisting of 22 original nodes the new
matrix A is a tridiagonal < 7 matrix, which can be readily
diagonalized. The advantage of the procedure is clear: the

new matrixA depends on the number of clusters and grows
with (2G+1), whereas the full adjacency matrif, grows
with the total number of nodes in the graph, namely with
(3x26-2).

From Eq.(12) the transition amplitude between the state
la,) at time O and the stafe;) at timet is given by

(D) = (aleMay = (a|Qe"AQYay,

whereA is the eigenvalue matrix ar@ is the matrix con-
structed from the orthonormalized eigenvectors of the new

matrix A.

Now the quantum mechanical transition probabilities are
given by 7 (t)=|a(t)[% Figure {a) shows the transition
probabilities for CTQWSs over clusters. Remarkably now, and
similar to Fig. 4b), already in rather short periods of time
such CTQWs move from one end cluster to the other. The
limiting probability distribution, x;, which is depicted in
Fig. 7(b), also supports this finding. Note that Figbyagain
reflects the symmetry of the original graph.

In conclusion, we have shown that CTQWSs do not neces-
sarily perform better than their CTRWs counterparts. By fo-

(16)

cusing on a particular graph, we have shown that the pen-
etration of such a graph by CTQWSs can be better or worse
than the one by CTRWSs, depending on the initial state and
on the propagation direction under scrutiny.

~ 1
A= (alAlag) = — E (n'|Alny=f,=f,,

(14)
dk nek

n’ ek

wheref, is the functionality of every node in tHeh cluster.
For the sub- and super-diagonal elementéafre find
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